\qquad

Exponent: An exponent refers to the number of times that a number is multiplied by itself.

- Example $-2 \cdot 2 \cdot 2=2^{3}$
- 2 is called the base of the exponent
- 3 is called the power of the exponent
Base $\longrightarrow \boldsymbol{X}^{\longleftarrow}$ Power

Multiplying Like Bases:

- Rule: $b^{x} \cdot b^{y}=b^{(x+y)}$
- Example: $3^{2} \cdot 3^{4}=3^{(2+4)}=3^{6}$

Zero Power:

- Rule: $\frac{b^{x}}{b^{x}}=b^{0}=1$
- Example: $\frac{3^{5}}{3^{5}}=3^{(5-5)}=3^{0}=1$
- Anything raised to the zero power is 1.

Power of a Quotient:

- Rule: $\left(\frac{a^{x}}{b^{y}}\right)^{m}=\frac{a^{m x}}{b^{m x}}$
- Example: $\left(\frac{p^{3}}{3^{5}}\right)^{2}=\frac{p^{2 \cdot 3}}{3^{2 \cdot 5}}=\frac{p^{6}}{3^{10}}$

Dividing Like Bases:

- Rule: $\frac{b^{x}}{b^{y}}=b^{(x-y)}$
- Example: $\frac{x^{5}}{x^{2}}=x^{(5-2)}=x^{3}$

Power of a Power:

- Rule: $\left(b^{x}\right)^{y}=b^{x \cdot y}$
- Example: $\left(m^{2}\right)^{4}=m^{(2 \cdot 4)}=m^{8}$

Negative Exponents:

- Rule: $\frac{1}{b^{-x}}=b^{x} \quad$ and $\quad b^{-x}=\frac{1}{b^{x}}$
- Example:

$$
\frac{1}{n^{-3}}=n^{3} \quad \text { and } \quad 2^{-5}=\frac{1}{2^{5}}
$$

