A discrete unit:___ Discrete
What does this mean? ___ things that are discrete.
We ___A collection of discrete units will:.

For example: \qquad of coordinate pairs that do not connect together.

Since the length from A to B is continuous, we could take any part we please, for example:

Therefore, we say that Continuous functions are for: \qquad
The graph of a Continuous function will be made up of coordinate pairs that do connect together to form a line or curve.

A continuous whole: \qquad

Consider the distance from A and B.
A
B
There is nothing to \qquad . As we go from A to B, the line \qquad without a break.
Ual

vs. Continuous

Which of these are continuous (C) and which are discrete (D)?
a) A stack of coins: \qquad b) The distance from here to the Moon:
c) A bag of apples: \qquad d) Applesauce: \qquad
d) A dozen eggs: \qquad e) 60 minutes: \qquad
f) Pearls on a necklace:
g) The area of a circle:
\qquad

1. In your own words describe the difference between discrete and continuous functions:
2. Which of these are continuous (C) and which are discrete (D)?
a) The volume of a sphere. \qquad
b) A gallon of water. \qquad
c) Molecules of water. \qquad
d) The acceleration of a car as it goes from 0 to 60 mph . \qquad
e) The changing shape of a balloon as it's being inflated. \qquad
f) Sentences. \qquad
g) Thoughts. \qquad
h) The height of corn plants. \qquad
i) The number of ears of corn produced. \qquad
j) The number of green M\&M's in a bag. \qquad
k) The time it takes for a car battery to die. \qquad
3. For the function $f(x)=\frac{1}{2} x$ that measures the height of a plant in inches after a number of days:
a) Make a table of values and graph the function:

x	y

b) True or False: The plant's height can be measured in parts of an inch? \qquad
c) Is this function Discrete or Continuous? \qquad

Name:	Period:	Date:
Ticket out the Door - Discrete vs. Continuous		
You are traveling over winter break on a plane from Austin Intercontinental Airport (AUS) to Los		
Angeles, California (LAX), describe 3 discrete and 3 continuous data examples you might encounter during your trip:		
Discrete Examples	Continuous Examples	
1.	1.	
2.	2.	
3.	3.	
Name:	Period:	Date:
Ticket out the Door - Discrete vs. Continuous		
You are traveling over winter break on a plane from Austin Intercontinental Airport (AUS) to Los		
Angeles, California (LAX), describe 3 discrete and 3 continuous data examples you might encounter during your trip:		
Discrete Examples	Continuous Examples	
1.	1.	
2.	2.	
3.	3.	
Name:	Period:	Date:
Ticket out the Door - Discrete vs. Continuous		
You are traveling over winter break on a plane from Austin Intercontinental Airport (AUS) to Los		
Angeles, California (LAX), describe 3 discrete and 3 continuous data examples you might encounter during your trip:		
Discrete Examples	Continuous Examples	
1.	1.	
2.	2.	
3.	3.	

