\qquad
\qquad
Page 411 \#2-14 even, 36 - 42 even, Page 418 \#34-46 even

Page 411:

Use the Laws of Logs to rewrite the expression in a form with no logarithm of a product, quotient or power.
2. $\log _{5}\left(\frac{x}{2}\right)$
4. $\ln (\pi x)$
6. $\log _{6} \sqrt[4]{17}$
8. $\log _{2}(x y)^{10}$
10. $\log _{a}\left(\frac{x^{2}}{y z^{3}}\right)$
12. $\ln \sqrt[3]{3 r^{2} s}$
14. $\log \left(\frac{a^{2}}{b^{4} \sqrt{c}}\right)$

Rewrite the expression as a single logarithm.
36. $\log 12+\frac{1}{2} \log 7-\log 2$
38. $\log _{5}\left(x^{2}-1\right)-\log _{5}(x-1)$
40. $\ln (a+b)+\ln (a-b)-2 \ln c$
42. $2\left(\log _{5} x+2 \log _{5} y-3 \log _{5} z\right)$

Page 418:

Solve the logarithmic equation for x .
34. $\ln (2+x)=1$
36. $\log (x-4)=3$
38. $\log _{3}(2-x)=3$
40. $\log _{2}\left(x^{2}-x-2\right)=2$
42. $2 \log x=\log 2+\log (3 x-4)$
44. $\log _{5} x+\log _{5}(x+1)=\log _{5} 20$
46. $\log x+\log (x-3)=1$

